BODY	Bike Odyssey Debugger Y

=============================

BODY is a symbolic debugger for debugging PHP code written 98% in PHP.

It comes in 2 parts:

BOOZE (Bike Odyssey OnStatement Zend Extensions)

Which is a PHP extensions to intercept individual PHP statements. (It works much like the assirt(*) function)

BODY PHP Code.

There are two parts, a server/target & client/debugger script.

The server code is included in added to the script to be debugged (target script) of the debugger, and pauses the target script on each statement. It then listens on a named pipe for PHP commands to execute

and returns the results to the requesting script.

The debugger script can then send commands to the target script to evaluate commands, expressions, tell the script to continue, and set conditions which when true, will cause the target to stop & wait for further instructions.

User Interface:

===============

Yes, it’s terrible.

If you are using this product then you are more than capable of making a better fist of it for your own purposes. Any worthwhile alternatives would be greatly appreciated.

Please extend the supplied classes rather than hacking them.

Command Line Commands:

======================

->(*) Indicates the command tries to access the target script (if it’s not running or finished the client hangs).

->(**) The GO command, if issued with no arguments does not wait for the target to respond. It assumes the target will execute to completeion. If there are break points set, it won't and will hang.

NB. SI is the most basic STEP operation, and most efficient.

(*) Debug <Argument> Debug a program. Listens for the PHP program asking to be debugged with name <argument>. (this program should have the statements include("debug.inc") and debug_program("debug name") and at the top.

�The debugger will wait till this prgoram starts. OR: The target program will wait till the debugger starts.

(*) Exec <Argument> Gets the target program to eval(<argument>), allowing you to run commands and statements in the target program. EG: $i=12; (sets $i to 12 in the program you are debugging) EG: $i=special_func("New Args");$i++;

(*) B/BREAK <Argument> Creates a Break Point that stops execution of the target program when eval(<argument>)==TRUE in the target program. If Argument is just a number, the break condition is the program reaches the line bumber <argument> in the current file. EG: B $i==100

(*) S/STEP [<Argument>] Step. Steps one statement in the program. (Future releases to step <argument> statements). Steps over functions and inclused(), not into them. EG: S 10

(*) SI [<Argument>] Step Into. Steps [<Argument>] number of statements (or until a break condition is TRUE). EG: SI 200

(*) SO Step Out Of. Runs the target progam until it exits the current function (or a Break Condition is True)

W <argument> Create a Watch expression. The expression <argument> is displayed in the watch list. EG1: W i$EG: W my_fucntion($i)EG: W "($i+$j)".$k

(*)G [<argument>] Go. Runs the program to the end, or to like number <argument>.

(***) Kill Kill. Terminates the target program.

Debug <Argument> Debug a program. Listens for the PHP program asking to be debugged with name <argument>. (this program should have the statements include("debug.inc") and debug_program("debug name") and at the top.

Reset. Resets all watch and break points.

Load/Save <Argument> Load/Save the current program settings (breakpoints, watch points etc). to file on host system <argument> NOT IMPLEMENTED YET.

DB/BD <Argument> Delete Breakpoint number <Argument>

DW/WD <Argument> Delete Watch Expression number <Argument>

�
INSTALLATION:

Part A:	Bike Odyssey OnStatement Zend Extention (BOOZE)

=======

1)	Change to the /USR/SRC (or wherever you keep your source files) and untar the tarball:

tar -zxvf body-1.12.0.zip.gz

Test:	This should result in a new directory "body-1-12.0". In it you should find this file, and the sub-directory tree ext/onstatement.

Locate the source tree location of your PHP installation. (Probably something like /usr/src/php-4.0.2)

Test:	Verify it has the directory ~/ext.

Copy the folder ~/ext/onstatement from the bodt-1.12.0 directory to the into the PHP Source ~ /ext directory.

cp -r /usr/src/body-1.12.0/ext /usr/src/php-4.0.2/ext

Test:	Check there is a diretory "onstatement" in the PHP Source ext directory.

Change to the PHP Source Directory

Test:	l ext/ should show a list of PHP extension directorties, including onstatement.

Run the command ./buildconf

This will scan all the extensions & allow PHP's the ./configure program to recognise the onstatement extension.

Test: Run the command ./configure --help and verify one of the options is "--enable-onstatement".

Configure PHP

Run the command ./configure --enable-onstatement {Your Options, e.g. --with-apache=/usr/src/apache --with-mysql=/usr.sql]

Make PHP

make

	Note any errors here and e-mail them to this progam's Author !!!

If's you've built the CGI version of PHP, cp php /usr/bin (or whereever your bin dir is). Check the PHP INSTALL documents to see how to configure Apache modules. If and only if you are using CGI version of PHP with Apache, you'll need the following (or similar) lines in your httpd.conf:

ScriptAlias /php /usr/bin

Action application/php-cgi /php/php

AddHandler application/php-cgi .php

Test: Start your browser & try to browse a file with extension .php containing <?php echo phpinfo(); ?>

	You should see a whole bunch of PHP settings.

	There should be a short section (no entries) for onstatement verifying it's been installed.

�

Part B:	Set the PHP.INI file to support the pipes class.

=======

The BODY debugger uses named pipes to communicate between the target script and the debugger script. These are managed by the "pipes" PHP class supplied. The named pipe files are created in directory:

/tmp

by default. You can override this with an entry in the PHP.INI:

pipe_location=/yourpipepath

(You could also hack the PHP code in pipe.inc)

Part C:	Bike Odyssey Debugger Y (BODY)

=======

Copy the PHP sources into your Web Tree. The required files are:

debugger_ui.php

debugger_ui.inc

debug.inc

pipe.inc

demo.php

Test the Installation:

-	Start 2 browser sessions.

In the first browser, put in the appropriate URL to run demo.php. It *should freeze.

In the second browser, put in the URL to run debugger_ui.php.

This should give you a command input text field. Enter:

Debug demo

then click on the "Command" button.

If all has worked OK, you'll now see the PHP source code to demo.php.

BEFORE YOU DO ANYTHING ELSE: type in the command field:

Go

This will disconnect the debugger client from the target program, allowing the target program to finish.

DON'T TRY TO USE THE DEBUGGER UNTIL YOU"VE READ THE BLURB ON DEADLOCKS IN THE README !!!!

�
Part D:	Setting up a program to be debugged.

=======

At the top of the code add the line include("debug.inc"). The debugger uses session variables and needs to be included before the target script generates any output.

Then, add the line:

debug_program("your-name");

Now, when you run this script, when it reaches this statement it will stop and wait to be contacted by the debugging client. N.B. That your browser may time out if you leave the target program too long.

Part E:	Increasing the Timeout Period.	(Optional)

=======

The default timeout period for script execution set by Appache is 5 minutes, PHP 30 seconds (though time listing on a pipe doesn't count) and 5 minutes in IE. If the script times out during debugging, then the target script isn’t going to complete.

I find 5 minutes per script invocation is too few (but then I'm a bit slow). To increase the timeout period to 1 hour:

For IE:

Edit the redistry & set:

HKEY_CURRENT_USER\software\microsoft\windows\CurrentVersion\InternetSettings

Create a new DWORD "ReceiveTimeout" with a value of 3600000 (1 hour).

In Appache's httpd.conf change:

Timeout 300 to

Timeout 3600

README:

=======

Deadlocks & Suspended Applications:

BODY works using named pipes. The target script waits for commands from the debugger script. When the debugger script sends commands to the target script, it usually (but not always - it depends on the command) waits for a response from the target script.

If the target script is waiting for a command from the debugger script, and the debugger script is not running, it will just hang until it times out. Similarly, if the debugger script tries to send commands to a target script that isn’t listening, the debugger script will hang.

With this release of Body these types of hangs are quite prone to happen. Currently, neither script has a mechanism for determining what state the other their partner has left the pipe between them in.

Some examples:

Most commands from the debugger script require a response from the target script. If the target script has finished, crashed, or simply not been started, the client program will hang, waiting for a response.

Setting a watch point with an invalid function name. (e.g. "watch $class_instance->method()" when $class_instance is either not defined (or goes out of scope), or does not have method() as a decleared function of the class). The target scripot will abend while trying to evaluate the watch point's thus failing to put a return value in the pipe. The debugger client script will hang around waiting for the return value.

Some BODY debugger commands don’t expect a response from the server. E.G. The GO statement tells the server to run indefinitely, and doesn’t try to send any further commands to the target script. However, if a breakpoint condition falls true, the target script.

Unhanging Progams:

==================

DON'T JUST HIT THE STOP BUTTON !!!

This potentially leaves the scripts running & processing data off the pipe, or worse leak memory. In the worst case, you can have multiple instances of the target script running, both attempting to process the same messages on the same pipe. This can produce some rather unexpected results.

If a Target hangs, in another browser session run the Debugger script, then run the commands:

DEBUG targetname

KILL

If the Debugger script hangs, in another browser run the target script.

This should bring the debugger script back to life. When it does, run the command:

KILL.

(You don’t have to run KILL once you've re-established comms between the target and the debugger. You can continue on and to debug it).

If the system is beyond recovery, then restarting the HTTP server can be restarted killing all running PHP threads. Probably done by:

/etc/rc.d/init.d/httpd restart.

�
BOOZE

=====

The Booze extensions implement the following functions to PHP:

The Global Variables:

$OnStatementCommand

$OnFunctionBegin

$OnFunctionEnd

$OnStatementLinenum

$OnStatementFunctionName

$OnStatementDepth

PHP Functions:

_fl()		Returns the name of the current script being executed. _fn()		Returns the name of the current function being executed.

_ln()		Returns the current line number of the currently executing script.

Mkfifo($filename)	Creates a Named Pipe of name $filename (with public RW access) Returns FALSE on success, FALSE otherwise.

onstatement_activate()	Activates the OnStatementMechanism (it’s off by default).

onstatement_deactivate() 	De-Activates the OnStatementMechanism.

When activated, on each and every statement, the contents of the global $OnStatementCommand are evaled. The OnStatementCommand variable must contain a valid PHP statement - including the terminating ;. It’s the equivalent of:

eval($OnStatementCommand);

During invocation, $OnStatementLinenum and $OnStatementFunctionName are set.

During invocation of the OnStatementCommand, the variable $OnStatmentDepth == 1, otherwise it's == 0. Any statements executed within the OnStatmenetCommand string, they do not update the OnStatamentFunctionName or OnStatmentLinenum variables.

E.G.

<?php

$OnStatementCommand = "print(\"\nBoo !!!
\");";

onstatement_activate();

print("\nStatement One
");

print("\nStatement Two
"); ?>

Outputs:

Boo !!!

Statement One

Boo !!!

Statement Two

Notes:

$OnStatementCommand can eval multiple commands:

e.g. "global $g; $g->function();";

Extending/Replacing the User Interface:

The User Interface supplied in debugger_ui.php is pretty basic command line processor. It has some obvious problems (like it re-loads & redraws the entire source file even just a break point or watch value are set. Please feel free to improve/extend it.

The author would welcome any alternate interfaces submissions or design suggestions.

It is however recommended that extensions to the interface are done by extending the debugger_ui class. The logic for processing steps, step-intos and step-overs are in this class. I hope to improve the algorithms and provide a mechanism for the user interface to know whether or not to wait for the target script. I want to put this extra logic in that class.

Tutorial:

=========

Start 2 browser sessions. In One, run demp.php, in the other run debugger_ui.php. The run the following commands and read the explanations:

Debug demo

W $i

This sets a watch expression of variable $i. It shows no value yet, as it hasn't been displayed.

Step

This steps one step through the program. Step steps over called functions (but not includes()).

SI

This also steps one statement.

Click on the Command button to repeat the last SI command.

G 48

Go to line 48. The program executes until it reaches line 48 of the current file.

SI 2

This steps 2 statements.

B $i==24

Set a break point for when $i reaches 24.

SI 2000

Run 2000 statements. Note that execution stops once the break condition is true. Also note the statement is shown bolded when it is true. Also not that the value if $i in the watch list is now 24.

BREAK $i==35

Add another break point for when $i gets to 35.

DB 0

Delete Breakpoint number 0. If we don't do this, execution will be broken on each statement until $i is incremented.

Go 14

Run till we get to line 15 inside a subroutine.

SO

This is Step Out Of. It executes until the current function has exited.

Exec $i=48;

There is another way to break loops or change things which have gone wrong. The Exec statement execute statements in the Target Script's environment. Note the change to the watch variable value. Note that the trainliong ; IS needed. NB You can chain several commands here, even:

if(TRUE) { $ii++; $jj++; return } else print("boo");

Watch sub_func_local(6)

Watch expressions can be quite complicated - but here there is NO SEMI-COLON !!!

Reset

Clean out all watch expressions and break points.

Go

Complete executing the script (but DON'T expect a response back from the target script - that's what you can't see the source code.)

Check the output on demo.php. It should have finished OK !!!

